If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4d^2+6d+1=0
a = 4; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·4·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5}}{2*4}=\frac{-6-2\sqrt{5}}{8} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5}}{2*4}=\frac{-6+2\sqrt{5}}{8} $
| 20m+-12m+-16m−-3m−14m=-19 | | -288=6(8+7x) | | 7c-4c=18 | | 10w+7=47 | | -4x2-5x+9=0 | | -8+3(m+4)=-2+2m | | 39=4x-x-2 | | -4+1/3r=0 | | 213=2x+7(4x+9) | | -j−-16j−-8j−10j=-13 | | (1/2)32t^2+16t=896 | | -301=7(5+8n) | | 40-20x-x^2=0 | | 3p-2p=17 | | 3x=2x+44 | | 3(x-5)-12=2(x-6)=2 | | 7/10x=3/20+5 | | 7a=85-18a | | -18b+15b+7b=-16 | | 3/4b=5/6 | | -5(3+4n)=-15+6n | | 2x-3.9=-3.5 | | 96=3v-3(-4v+8) | | 4u-2=26 | | -3(4n-5)=99 | | 2x+34-(4(x)=0 | | 5x-34=4x-23 | | k-45=27 | | 7v+5(7v-6)=306 | | 1-x=x+2+3(1-x) | | .33x+.5x=6=11 | | -121=-7+6(-4x-7) |